
N95- 23760

Solution and Reasoning Reuse in Space Planning and Scheduling
Applications

Gdrard Verfaillie and Thomas Schiex

ONERA-CERT *

2 avenue Edouard Belin, BP 4025

31055 Toulouse Cedex, France

phone: (33) 61 25 25 25

fax: (33) 61 25 25 50

{verfail,schiex}@cert.fr

Key words and phrases

Artificial Intelligence, Dynamic Constraint Satisfac-
tion Problems, Planning, Scheduling.

Abstract

In the space domain, as in other domains, the CSP

(Constraint Satisfaction Problems) techniques are in-

creasingly used to represent and solve planning and
scheduling problems. But these techniques have been

developed to solve CSPs which are composed of fixed

sets of variables and constraints, whereas many plan-

ning and scheduling problems are dynamic. It is there-

fore important to develop methods which allow a new

solution to be rapidly found, as close as possible to the

previous one, when some variables or constraints are
added or removed.

After presenting some existing approaches, this pa-

per proposes a simple and efficient method, which has

been developed on the basis of the dynamic backtra-

cking algorithm [1]. This method allows previous solu-

tion and reasoning to be reused in the framework of a

CSP which is close to the previous one. Some experi-

mental results on general random CSPs and on opera-

tion scheduling problems for remote sensing satellites

are given.

Space planning and scheduling

applications and CSP

In the space domain, as in other domains, the Cons-

traint based approach is increasingly used to repre-

sent and solve planning and scheduling problems. The

CSP (Constraint Satisfaction Problems) framework of-

fers a general formalism for constrained problems (any

kind of constraint is allowed) and powerful solving me-

thods [2]. Various constraint programming languages
and tools have been developed these last years on this

basis and are now available. Using them avoids long
and useless software developments.

*Thiswork was done at the UniversityofNew Hamp-
shire(USA) and was supportedtheFrenchMinistryofDe-
fence(DGA-DRET).

Let us recallthat a CSP isdefined by two sets:a set

V of variables and a set C of constraints. Each variable

has a finite set of possible values: its domain. Each
constraint links a subset V' of the CSP variables and

defines the set of the possible combinations of values
for the variables in W.

The usual problem is to find a solution, i.e a value
for each variable such that all the constraints are sa-

tisfied. The most used methods are combinations of

a backtrack search, using a depth-first strategy and

some heuristics along with a filtering method (forward-

checking, arc-consistency, path-consistency...) which
allows the search space to be pruned.

Dynamic problems: origin
A strong limitation of these techniques lies in the fact

that they have been developed under the assumption

that the sets of variables and constraints are given once

and for all. In many real applications, and particularly

in space applications, this assumption is not valid [3].
The reasons are numerous:

• before a mission, in the phase of specification and

analysis, engineers may want to explore several al-

ternatives and their implications; they may also

want to derive a new specification from a previous

one;

• during a mission, there is always a great difference

between execution and forecast: operation results,

durations, resource consumptions, possible break-
downs, ...

• according to new requirements or decisions of the

people in charge of the mission, some new opera-

tions may have to be performed and others already
planned and scheduled may have to be removed.

Dynamic problems: requirements

According to the computing point of view, all these

situationsare very similar:a previous CSP has been

solved;a new one, which iscloseto the previous one

(justsome variablesand constraintshave been added

or removed), has now to be solved. It is obviously

possible to solve it from scratch, as it has been done

for the first one, but this naive method may be very
inefficient and lead to an instability of the successive
solutions.

During the mission, if the time available to find a

new plan or a new schedule is limited, e_iciency can
become a very important requirement. Before or du-

ring the mission, if some work (training, organization,
orders ...) has been started on the basis of the pre-

vious solution, stability of the successive solutions can

also be important.

Therefore one needs methods which, starting from

the previous solution and the previous reasoning, allow

a new solution to be rapidly found, as close as possible

to the previous one.

Existing approaches

The existing approaches can be classified into three

groups:

• heuristic approaches, which consist of using any pre-

viously consistent assignment (complete or not) as

a heuristic in the framework of the current CSP [4];

• local repair approaches, which consist of starting

from any previously consistent assignment (com-

plete or not) and of repairing it, using a sequence

of local modifications [5, 6, 7, 8];

• cor_traint recording approaches, which consist of

recording any kind of constraint which can be de-
duced in the framework of a CSP and its justifica-

tion, in order to reuse it in the framework of any

new CSP which includes this justification[4, 9].

Dynamic backtracking

In spite of its name, the dynamic backtracking algo-

rithm [1] does not deal with dynamic CSPs. The term

dynamic means here that its backtracking mechanism

allows the variables to be unassigned in an order which

is different from the one which has been used to assign
them. It can be described as follows:

• let val be n value which can not be assigned to a

variable v, because of a constraint c which links v to

previously assigned variables and would be unsatis-
fied; let V _ be the set of variables linked by c; the

set V' - (v) is recorded as an eliminating ezplana-
tion for val; the conflict set of a variable is the union

of the eliminating ezplanations of all its eliminated

values;

• let v be a variable whose current domain is empty,

let V' be its conflict set; let v' be the last variable

in V _ according to the assignment order and val _

be its current value; v _ is unassigned; then all the

eliminating ezplanations where v _ is involved are re-

moved (they are no more valid) and the set V'-{v')

is recorded as an eliminating ezplanation for val'.

Termination, correctness and completeness of this

algorithm have been proven.
Note the difference between such a mechanism and

the usual chronological backtracking and conflict di-

rected backjumping [10] mechanisms:

• chronological backtracking does not backtrack to C,

but systematically to the variable which immediately

precedes v according the assignment order;

• conflict directed backjumping backtracks (back-

jumps) to C, but, doing that, it unassigns all the

variables which are between C and v according to

the assignment order;

• dynamic backtracking also backtracks to C, but it

only unassigns v'.

This allows us to say that the dynamic backtracking

mechanism is more pertinent and less destructive than
both other ones.

Extended Dynamic Backtracking

Such features are very interesting in the framework

of dynamic CSPs, when constraints and variables are
added or removed in any order. For that, the notion

of eliminating ezplanation has first to be extended in
order to take into account constraints and variable do-

mains as assumptions, as previously done with varia-

ble assignments. An extended eliminating ezplana-

tion involves previously assigned variables (assignment
constraints), variable domains (unary constraints) and

usual constraints, which are together responsible for

the value elimination. The previous description has

just to be slightly modified to take into account this
extension:

• let val be a value which can not be assigned to a

variable v, because of a constraint c which links v

to previously assigned variables and would be un-

satisfied; let V' be the set of variables linked by c;

the set W - {v) U {c) is recorded as an eliminating

ezplanation for val; the conflict set of a variable is
the union...

• let v be a variable whose current domain is empty,

let V' be its conflict set and d(v) be its initial do-

main; let v' be the last variable in V' according to
the assignment order and val _ be its current value;

C is unassigned; then all the eliminating ezplana-
tions where C is involved are removed and the set

V' - {v'} U (d(v)) is recorded as an eliminating ez-

planation for val _.

And the previous algorithm can be extended as fol-

lows to deal with dynamic CSPs:

• let c be a constraint which is added or restricted

(this includes the case of restricted variable do-

mains); if the current assignment does not violate
c, there is nothing to do; else, let W be the set of

428

thevariableslinkedby c; let v be the last variable

involved in V' according the assignment order and

val be its current value; v is unassigned; then all

the eliminating ezplanations where v is involved are

removed and the set V' - {v) U {c} is recorded as

an eliminating ezplanation for val.

• let c be a constraint which is removed or relaxed

(this includes the case of relaxed variable domains);
all the eliminating ezplanations where c is involved

are removed;

Such an algorithm has very interesting properties:

• all the possible changes to a CSP (variable and cons-

traint addition, removal and modification) are co-
vered;

• previous solution and reasoning (eliminating eli-

minations previously recorded) are systematically

reused; just the variable assignments which are
no more consistent and the eliminating ezplana-

tions which are no more valid are removed; in that

sense, this extended dynamic backtracking algorithm

combines the advantages of the local repair and

constraint recarding approaches and should provide

goods results in terms of both efficiency and stabi-

lity;

• changes can be taken into account at any time, ei-

ther after or during the search;

• in case of inconsistency, the user can be provided

with an explanation: a subset of the CSP constraints

and domains which are together responsible for this

inconsistency;

• computing eliminating ezplanations and conflict sets

is a very simple task (only union operations are re-

quired) and the space required to record them is

polynomially bounded (it is O(nd(n + m)), where n
is the number of variables, m the number of cons-

traints and d the maximum domain size);

Experiments, results and analysis

This algorithm (called ddbt for dynamic dynamic back-

tracking) has been experimented on dynamic CSPs and

compared with others, like conflict directed backjum-

ping (cbj [10]), dynamic backtracking (dbt [1]), heuristic

repair (hrp [6]) and local changes (Ic [8]), with backward

and forward-checking.

A first set of general and binary CSPs has been used

for these experiments. These CSPs have been ran-

domly generated using fixed values for the number of

variables (16) and the domain size (13) and various va-

lues for the constraint tightness (from 0.1 to 0.9), the

graph connectivity (from 0.2 to 0.9) and the change

size (ratio between the number of added or removed

constraints and the number of constraints, from 0.01

to 0.16).

The results, which have been obtained by using

forward-checking with each algorithm, are summed
up in the four following set of curves. The three

first ones show efficiency results (number of constraint

checks) on underconstrained, intermediate and over-
constrained problems. The last one shows stability

results (distance between successive solutions, i.e. the

number of variables which are differently assigned in

both solutions) on underconstrained problems:

• the first and the third sets of curves show that ddbt is

the most efficient on underconstrained (always con-

sistent) and overconstrained (always inconsistent)

problems;

• the second one shows that cbj remains the most effi-

cient on the intermediate problems (the hardest ones

to be solved; sometimes consistent, sometimes not),
but that ddbt is not far worse;

• the fourth one shows that the algorithms which
reuse the previous solution such as hrp, lc and ddbt

provide a better stability than the others do.

The same algorithms have been applied with the

same kind of results on randomly generated opera-

tion scheduling problems for remote sensing satellites.

These problems, whose definition comes from previous

studies for the Prench Space Agency (CNES), in the

framework of the SPOT program, are composed of a

set of remote sensing satellites and a set of user obser-
vation requirements:

• each user requirement is defined by an area to ob-

serve and some constraints related to the mode, the

quality and the period of the observation;

• each satellite is defined by its trajectory, its obser-

vation capabilities, its possible modes and minimal
transition times between modes.

One assumes that these data allow a finite set of

pairs (satellite, time slot) to be computed for each
user requirement. In these conditions, the problem

becomes a CSP where the only constraints are related
to the minimal transition time between two time slots

corresponding to the same satellite. But the lack of

real data considerably limited the interest of these ex-

periments.

Conclusion

With this extension, the dynamic backtracking algo-

rithm offers the opportunity to reuse previous solution

and reasoning, when the problem changes, during or

after the search. First experiments on small problems

are promising. It should allow dynamic and on-line

planning "and scheduling problems to be efficiently dealt

with. But these results have to be confirmed by larger

experiments on various real problems.

429

underconstrained problems

400

300

" _ 200
o e-,

cD

E
100

0

0 0.04 0.08 0.12 0.16

change size
|

.,==1

o

o
o

E

E
C

intermediate problems

160000

120000

80000

40000

0

0 0.04 0.08 0.12 0.16

change size
i

overcons_ained problems

5OOO

4000

3000

2000

1000

0

0

j____---E3

0.04 0.08 0.12 0.16

change size

r_

underconstrained problems

0

0 0.04 0.08 0.12 0.16

change size

Legend:

=i

hrp

--*-- lc

dbt

_, ddbt

References

[1] M. Ginsberg, "Dynamic Backtracking", Journal
of Artificial Intelligence Research, vol. 1, pp. 25-
46, 1993.

[2] E. Tsang, Foundations of Constraint Satisfaction,
Academic Press Ltd., London, 1993.

[3] C. Ba_tien-Thiry and G. Verfaillie, "Space Mis-
sion Plan : Robustness, Flexibility, Replanning
and Explanations", in Proc. of the ESTBC Work-
shop on Artificial Intelligence and Knowledge-
Based Systems for Space, 1993.

[4] P. Van Hentenryck and T. Le Provost, "Incremen-
tal Search in Constraint Logic Programming",
New Generation Computing, vol. 9, pp. 257-275,
1991.

[5] B. Freeman-Benson, J. Maloney, and A. Borning,
"An Incremental Constraint Solver", Communi-
cations of the ACM, vol. 33, pp. 54-63, 1990.

[6] S. Minton, M. Johnston, A. Philips, and
P. Laird, "Minimizing Conflicts: a Heuristic
RepairMethod for ConstraintSatisfactionand

SchedulingProblems",ArtificialInteUi#ence,vol.

58,pp. 160-205,1992.

[7]B.Selman,H.Levesque,and D. Mitchell,"A New

Method forSolvingHard SatisfiabilityProblems",

in Proc. of AAA1-9_, pp. 440-446, San Jose, CA,
1992.

[8] G. Verfaillie and T. Schiex, "Solution Reuse in
Dynamic Constraint Satisfaction Problems", in
Proc. of AAAI-94, Seattle, WA, 1994.

[9] T. Schiex and G. Verfaillie, "Nogood Recording
for Static and Dynamic CSP", in Proc. of the
5th IEEE International Conference on Tools with
Artificial 1nteUigence, Boston, MA, 1993.

[10] P. Prosser, "Hybrid Algorithms for the Constraint
Satisfaction Problems", Computational Intelli-
gence, vol. 9, pp. 268-299, 1993.

430

